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Abstract

The emphasis is on development of likelihood ratios and detection
algorithms for problems involving nonGaussian data. The first problem
considered is that of detecting a nonGaussian signal in Gaussian
noise. This frequently arises in active sonar; it could also be
important for passive sonar. General results are presented on non-
singular detection and likelihood ratio. A recursive discrete-time
detection algorithm is obtained and is shown to be a likelihood ratio
detector when the signal-plus-noise is Gaussian.

The second major problem considered is that of detecting a signal
in spherically-invariant noise (SIN). This is a model which has been
proposed for some impulsive-plus-Gaussian environments, and is closely
linked to detection problems encountered in some active sonar appli-
cations. General results on nonsingular detection and likelihood ratio
are first obtained. For detection of a known signal, the behavior of
the discrete-time likelihood ratio is analyzed as the sample size
increases. Constant-false-alarm-probability detectors are given, and
an example based on sonar data illustrates the potential loss due to

using a Gaussian model when the noise is actually nonGaussian SIN'»;I
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LIKELIHOOD RATIOS AND SIGNAL DETECTION 1
FOR NONGAUSSIAN PROCESSES

1. INTRODUCTION

NonGaussian signal detection problems arise in several
applications of wunderwater acoustics. NonGaussian signal processes
occur for active sonar when the reflecting target (with surface
undergoing random motions) has only a few dominating scatterers. The
noise in such applications 1is frequently Gaussian, so that the
detection problem is that of detecting a nonGaussian signal embedded
in additive Gaussian noise.

Problems of detecting a signal in nonGaussian noise also arise;
for example, for sonars operating under ice. Noise due to
ice-cracking, creaking, floe-smashing, etc., contributes a component
which has been found to have substantial nonGaussian behavior [6]. In
addition, active sonars operating under ice near the surface may
encounter a nonGaussian component due to specular reflection from the
irregular under-ice surface. Another environmental situation which may
produce nonGaussian noise is shallow-water reverberation.

Optimum detection algorithms require knowledge of the statistical
properties of data processes. For applications involving nonCGaussian
noise with a strong impulsive component, a useful univariate noise
model has been developed by Middleton [12]. Much remains to be done
in this area. Development of optimum detection algorithms requires
knowledge of multivariate statistical models for both the noise and
the signal-plus-noise processes. At present, such models do not exist
for some of the most important nonGaussian environments. Their
development will require a mix of physics, mathematics, statistics,
and extensive computational 1investigations. These are challenging
problems whose solution must be obtained before one can obtain optimum
detection algorithms.

This contribution first considers algorithms for the detection of
nonGaussian signals in Gaussian noise. Results are summarized for the
continuous-time problem; more attention 1is given to discrete-time
approximations. A discrete-tim: recursive algorithm is given. It 1is
shown that (under appropriate assumptions) this discrete-time algor-

ithm is a likelihood ratio detector if the signal-plus-noise process
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is Gaussian. Attention is then turned to signal detection for problems
involving nonGaussian spherically-invariant noise (SIN). The wuni-
variate Class A model of Middleton [12] is seen to be a special case
of SIN. The likelihood ratio for detection of a signal in SIN is

derived for both <continuous-time and discrete-time applications.

Approximations, including constant false-alarm probability (CFAP)
detectors, are discussed. The effect of sample size is also
considered. These results indicate tlat robust detection can be

achieved for detection of known signals in spherically-invariant
noise. In applying these results to Middleton's Class A model, it is
shown that placing that model in the context of SIN provides a number
of useful consequences.

All stochastic processes to be discussed are real-valued and
defined on a probability space (Q., . P). For processes in continuous
time, the parameter set is [0,T], and all such processes are assumed
to be mean-square continuous. All noise processes are assumed to have
zero mean. (V(t)) will denote a stochastic process, while V(t) will
denote the random variable obtained by sampling the process at the
time t. The argument w in Q will typically be suppressed:
V(t) = V(t,w). 22[O.T] is the linear space of all Lebesgue-square-
integrable functions on [O,T]. L2[O,T] is the set of equivalence
classes [u] obtained from functions u in $2[0.T]. For a noise process
(N(t))., r, will denote the covariance function: rN(t.s) = E N(t)N(s).

N

RN will denote the covariance operator of (N(t)): that 1is, the

integral operator in L2[O.T] having r, as its kernel. R, will be

N N
assumed strictly positive; (An) is the sequence of (strictly positive)

eigenvalues of RN' with (en) corresponding c.o.n. eigenvectors.
{u,v> = IT u{(t)v(t)dt for u and v in L2[O.T]. The signal-plus-noise
0

process at time t will be Y(t) = S(t) + N(t). In the continuous-time
case, the likelihood ratio sought is on L2[O.T]Z qu/duN. where My
(resp.. uN) is the probability on L2[O.T] induced by the stochastic
process (Y(t)) (resp.., (N(t))).

For a noise (N(t)) with covariance function r_,. H, will denote

N N

the reproducing kernel Hilbert space HN of ™" As is well-known, there

L
is an isometry between HN and range(Rﬁ)t the element u is in HN if and

i
only if there exists a unique element [u] in range(Rﬁ) generated by u.

The 1inner product of two elements u and v in ”N is given by
[u.v]y = 32 <([u].e >¢[v].e >/A_. Since r, is taken to be continuous,
N n n n N
n>l
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the elements of HN will be continuous functions. It can also be noted

1
that range(Rﬁ) is a real separable Hilbert space under the above inner
product (i.e., with respect to the inner product ([u].[v])N = [u.v]N).
For simplicity, the element [u] in L2[O.T] will usually be written

simply as u.

For observations x in n-dimensional Euclidean space E". the noise
covariance matrix will be assumed strictly positive. A» is the
transpose of the matrix A. For a bounded linear operator A in L2[O.T].
A¥ will denote the adjoint.

In discussing existence of likelihood ratios for continuous-time
processes, it is necessary to introduce more mathematical structure.

Thus, let (X(t)), t in [{O,T] be a m.s. continuous stochastic process.
U{XS, s{t} is the o-field generated by {Xs, s{t}; gg(x) is the filtra-
tion consisting of all the o-fields U{XS. s{t'} for 0 ¢ t’ < t. gO(X)
will denote gg(X). gt(X) (resp.. o(X)) will denote the filtration

generated by g?(X) (resp.. gO(X)) and all sets of P-measure zero, com-
pleted with respect to the underlying probability P. If (X(t)) and
{V(t)) are two such processes, then gt(V) v gt(X) will denote the
smallest filtration containing both gt(V) and gt(X). with g(V) v g(X)
similarly defined.

The continuous-time problems considered here will be modeled in
LQ[O.T]. Somewhat similar results can be obtained by considering the

probabilities induced on R[O'T], the real-valued functions on [0,T].

However, those results [5] are not so complete as those for L2[O,T].

For Ry and My probabilities on the Borel sets of L2[O.T].
ity << Hy denotes absolute continuity of My with respect to My {so that
the likelihood ratio qu/duN exists). Hy 1 My denotes orthogonal

probability measures:; in detection applications, orthogonal measures

imply singular (perfect) detection. Hy ~ My denotes wmutual absolute

continuity: Hy << Hy and Iy << Hy - PD will denote probability of
detection = probability of correctly deciding signal present. PFA
denotes probability of false alarm = probability of incorrectly
deciding signal present. PFA = 0 implies PD = 0 if HgN << My PD = 1
. . , _ ) ] . o

implies }FA = 1 if “N << Mg yn- Thus, Hion ~ Hy is the situation

nsunlly assumed to hold for practical problems in signal detection. We
refer to this as non-singular detection.
Treatment of the continuous-time <case introduces substantial

complication into the analysis. However, it clarifies structure,
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enables one to obtain discrete-time finite-sample algorithms
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approximations, and provides valuable performance bounds.

2. DETECTION OF NONGAUSSIAN SIGNALS IN GAUSSIAN NOISE

An important active sonar application 1is the detection of
nonGaussian signals embedded in additive Gaussian noise. For example,
when the noise background is reverberation-limited, the scatterers
giving rise to the reverberation can frequently be assumed to be
statistically-independent in their reflecting properties. Application
of the central limit theorem then gives a Gaussian process for the
reverberation process. However, if the target return is primarily due
to reflections from a few random scatterers (each contributing random
phase and amplitude). then the composite reflection from the target
will generally be nonGaussian. In this particular application, the
signal and noise processes are dependent, and the noise process is
nonstationary.

Other applications may also 1involve detection of nonGaussian
signals in Gaussian noise. For example, in passive sonar the
hackeground noise can frequently be assumed to be Gaussian and
stationary. However, signal sources such as ship-radiated noise need
not be Gaussian.

Full solution of such problems ideally includes determining con-
ditions for nonsingular detection, and then (when nonsingular
detection holds) determining the likelihood ratio.

If the signal-plus-noise process is also Gaussian, then
conditions for nonsingular detection and the form of the likelihood
ratio are well known [4, 14]. If the signal 1is nonGaussian and
independent of the noise, then sufficient conditions for nonsingular
detection are given in [3]. With the noise Gaussian., the sufficient
condition is that the sample paths of the signal process belong (w.p.
1} to HN' the reproducing kernel Hilbert space of the noise. Under
mild assumptions, an expression for the likelihood ratio can also be
obtained from the results of [3].

If nothing is known about the signal-plus-noise process except
its covariance and mean functions, then of course a likelihood ratio
detector cannot be determined. However, if one limits consideration to
quadratic-linear operations on the data (in forming a test statistic),
then the deflection criterion can be used to determine the optimum

operation. That s, let T be the class of all admissible test
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statistics T. The deflection of T is then DOl(T)
12 2 2

= (ENT(x) - ES+NT(X)) /(ENT (x) [ENT(x)] ). where EN( ) (resp.,.

ES+N(°)) denotes expectation w.r.t. the noise (resp., signal-plus-

noise). The problem then consists of determining supr DOI(T). and
determining a T achieving this supremum or a sequence (Tn) converging
to the supremum. The optimum quadratic operation for discrete-time
finite-sample data is given in [1], while [2] contains the solution
for the infinite-dimensional case and results linking deflection to
nonsingular detection.

The results on deflection given in [1] and [2] apply to problems
where the signal-plus-noise process is neither Gaussian nor consisting
of th:e noise plus an independent signal process. For such problems, it
is desirable to have general conditions for nonsingular detection and
nlso expressions for the likelihood ratio. Currently-available data
models may be inadequate to fully wutilize such results, but their
availability for future use 1is clearly desirable. Results for the
special continuous-time case when the noise is the Wiener process have
been known for many years [11]. However, the Wiener process has
properties that are not observed in practical sonar problems: sample
funcrions that are almost surely nondifferentiable at almnst all time
hoints, the Markov property, and the martingale property. Thus, the
design of future optimum signal detection systems requires results
beyond those already mentioned:; such results have recently been
obtained [5].

The results contained in [5] 1include general conditions for
nonsingular detection of a possibly nonGaussian signal imbedded in
additive Gaussian noise. The work is based on the spectral
representation of second-order stochastic processes, particularly as
developed by Hida [10]. The general problem is that of discriminating
between a Gaussian noise process (N(t))., t in [O,T]. and a possibly
nonGaussian process (Y{t)), t in [O.T].

The basic assumptions made in [5] are the following:

(A.2-1) (N(t)) vanishes almost surely at t = O;
(A.2-2) (N(t)) has a purely-continuous spectral representation of
multiplicity M ( o,

Assumption (A.2-2) 1is equivalent to (N(t)) having a repre-

sentation of the form

M
B t..
N(t) = 151 IOPi(t.s)dBi(s) (2.1)

where {((B (t)): i<M, t in [O0,T]} is a family of independent-increment
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mutually-independent path-continuous zero-mean Gaussian processes, and

each Fi is a Borel-measurable function on [0,T]x[0.T] with Fi(c,s) =0
for s>t. This representation also satisfies

S N

b) I I F.(t,s)dBi(s)dt ( @, where Bi is the Borel measure on [0,T]
i=1 YO Y0 !

defined by the non-decreasing variance of (Bi(t)):

B (a.b] = EB?(b) - EB?(a).

The representation (2-1) 1is taken to be the proper canonical
representation for (N(t)) [10]. One consequence is that the completion
of the o-field U{Bi(s)I i<M, s<{t} is the same as the completion of
o{N(s): s<t} for each t in [0,T]. In general, the equality (2-1) holds
almost surely dP for each fixed t in [O,T]:; by assuming that (N(t)) is
separable w.r.t. closed sets, one obtains a.s. path equality.

The basic results on non-singular detection of a possibly
nonGaussian signal embedded in additive Gaussian noise, as given in
[5]. entail both a set of sufficient conditions [5, Theorem 2] and a
set of necessary conditions [5, Theorem 3]. The sufficient conditions

for absolute continuity on L2[O.T] are given in the following result.

Prop. 2.1 [5, Theorem 3] Let (V(t)) be a stochastic process indepen-

dent of (N(t)). Suppose that (S(t)) is a stochastic process adapted to
g(N) v g(V) and with paths a.s. in HN. If Y(t) = S(t) + N(t) a.e.
dtdP, then My << My -

Both the sufficient conditions and the necessary conditions
include the requirement that the signal process have a representation
with almost all paths in the reproducing kernel Hilbert space of the
noise covariance function Ty With the representation (2-1), this
means that almost all sample functions of the signal process have a
representation of the form

M

N t .
S(t) = ifl jo F.(t.s)Q,(s)dp, (s) (2-2)

where (Qi(t)) is a stochastic process with almost all paths in 12[Bi]:

Jr Q?(s)dﬁi(s) < » a.s. dP. The remaining conditions for absolute
0
continuity embody measurability conditions on the signal process.

These conditions are given in terms of the noise process (N{t}) and a
stochastic process (V(t)) independent of the noise. They are
essentially related to the signal process being a causal functional of

the two processes (N(t)) and (V(t)). The basic idea is that the signal
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may be a causal functional of both the noise process (as in the case
of dependent signal and noise) and an independent "message' process.
The likelihood ratio duS+N/duN for this problem is given in [5.

Theorem 7]. Define a vector stochastic process (Z(t)) by
t
Z,(v) = jo Q,(s)dB (s) + B (1) (2-3)

where the processes (Qi(t)) are those appearing in (2-2) above. Then

M
t
S(t) + N(t) = 151 Io F (t.s)dZ (s) (2-4)

The vector processes {(Z(t)) and (B(t)) define probabilities PB and PZ

on the space of all M-component vector functions on [O,T] whose
component functions are all continuous. Under the conditions for

existence of duS+N/duN, sz/dPB will also exist, and for an

~ ~

observation x in L2[O.T],

[dug,y/dny](x) = [dP,/dPp](m[x]) (2-5)

~ ~

a.e. duN(x). m(x) is an M-component vector of continuous functions,

defined by
m [x](t) = n§1 <x,en><fi,en>/kn, (2-6)
£l(s) = £ F (s u)aB, (u).
0
;f The likelihood ratio dP /de of (2-5) has some explicit known

z

~

v,

LA
£

representations [11], depending on the properties of (Z{t)). These

v
P A

representations are based on the fact that each (Bi(t)) is a path-

vt

-—rYyvoerre
ML

continuous Gaussian martingale.

The results given above are for continuous-time observations. In

-
o
®

sonar applications, it is desirable to have discrete-time recursive |
algorithms, which do not require complete recomputation of the test
statistic each time a new data point is received. Moreover, it is

desirable to have an algorithm with parameters that can be estimated

Such an algorithm will now be derived. It will be based on the

|
from data, since a complete data model will not usually be available.
following additional assumptions: ‘
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(A.2-3) The noise process has multiplicity M=1, and the process
(Bl(t)) is the standard Wiener ©process (W(t)}: thus

N(t) = I; F(t,s)dW(s), where F is a Volterra kernel with

IT IT F2(t.s)dsdt < ®;
090

(A.2-4) The process (Z(t)) defined in (2-3) is a diffusion with

respect to the Wiener process and has memoryless drift
function, so that Z(t) = Jt o[Z(s)]ds + W(t). (2-7)
0

The assumption (A.2-3) 1is reasonable from several viewpoints,
such as the fact that multiplicity-one processes are dense (by a
mean-square distance <criterion) 1in the space of all second-order
processes, and that any Gaussian vector can be represented as the
result of a lower-triangular matrix operating on white Gaussian noise.
One can also show that the assumption (A.2-3) is satisfied whenever

the noise process has a proper canonical representation
N(t) = jt F(t.s)dB(s). where the variance of (B(t)) is an absolutely
0

continuous function on [0,T].

The assumption (A.2-4) is less tenable; it is made primarily for
computational convenience {(which is in fact not very convenient, even
so) when the signal-plus-noise statistics are unknown. 1t does permit
one to consider a very large class of signal-plus~-noise processes
without having complete knowledge of the statistics. Of course. if a
complete mathematical model is available, the assumptions (A.2-3) and
(A.2-4) need not be made (if sz/dPB can be determined).

For the detection problem as defined above, the general form

(under a mild restriction) of the likelihood ratio is

[duS+N/duN](x) = lim exp [An(x)]

where 0O = Y < Y < ty < L0 [ t, = T is a partition of [O.,T] such
, n n
that SUp Itj+1 jl - 0,
J
n n-l n n n
A (X) = 2 n(m[x](t]))(m[x](tl+l) - m[X](rl))
i=0
(2-5)
nol 2 1 n
- (1/2)y sy oS (mIx )yt =y,
o i i+ i
i=0
and the limit exists in the norm of lv][u,\,].
i
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The representation of (N(t)) by Nt = ft F(t.s)dW(s) yields that
0]

RN = FF»*, where F is the integral operator with F(t.s) as its kernel,

and F»* is its adjoint. This can be used to provide an expression for
the function m appearing in (2-5) and (2-6) that does not require

calculation of eigenvalues and eigenvectors.

First, notice that <e_ ,f > = IT jt F(s,u)du e (s)ds

= I‘ IT F(s.u)e (s)dsdu = [LFxe ](t). where [Lf](t) = It f(v)dv. Using
o Jo \ 3 0

this, the expression (2-6) for m can be rewritten as

K
mx](t) = lim [LF* 3 <e x> Ry'e J(t)
k- 1 J J

lim [LF*Ry'P, x](t)
koo
where P, x is the projection of the function x on the subspace spanned

k
by {el.....ek}. Since R;l = F*AIF_I, the preceding becomes m[x](t)

= lim [LF_lpkx](t).
ko
A Dbasic difficulty 1is that (with probability one {[3]) the

. . . . -1
observation x will not be in the domain of the operator F °, so that

F 1x is not defined. In fact, LF“1 will in general not be a bounded
linear operator. However, for almost all sample functions x (either
from noise or signal-plus-noise), m[x](*) is a continuous function of
t. Thus the map m is a linear operator from L2[O.T] into C[{0.,T] whose
domain includes (with probability one) all sample functions of the
noise and signal-plus-noise processes.

The difficulty in implementation of the likelihood ratio (2-8)
will lie in determining the function ¢ and linear operator m. o is a
parameter of the signal-plus-noise process, and its estimation is a
problem of considerable interest in stochastic processes (as the drift
of a diffusion) and in stochastic filtering. The possibly unbounded
linear operator m, mapping L2[O.T] into C[O,T]. depends only on the
covariance function of the noise. If the noise covariance function is
known, then the preceding expressions can be used to obtain a
discrete-time finite-sample approximation to the likelihood ratio.
Here we <consider such approximations when one knows only the
covariance matrix of the noise.
Let RN denote the covariance matrix of the noise; one can write

RN = F F», where the matrix F is lower triangular. Now, the expression

- A Y
P A e PR LN A . EURE T S T - - e e A
| . - . N PN « " - - L . . - o R . - . . . Y . - . “u ~ ‘e - - ~, -
. T VY PSP S PP P S0 SV IPres. . - DR E A A PP PE TR PO T VWY o0 T TPV ST T W WP U DRI iy S P T DR Gt e 0. Iy R T




for m given above is of the form

_ 10
| m[x](t) = lim [LF 'P x](t).
a ke
where RN = FF¥, L is the 1integration operator, and Pk is the
projection of x onto the subspace spanned by {el,...,ek}. where

(en. n>l} are o.n. eigenvectors of RN. Thus, a reasonable procedure is

simply to replace this expression by m[x] = L E_lﬁ. where x 1is the

observed data vector, and L 1is the summation operator in Ek;
J

(L &)j = izl Xy

There is a fundamental difference between the above approximation

. . -1 . .
to m and the exact result. As previously mentioned, F "x is (with

probability one) not defined for the continuous-time situation; here,

of course, there is no such problem for E_lg.

Implementation of the discrete-time algorithm for a fixed sam-
pling interval, A, will now be considered. Then, when the observation
is an n-component vector, and the above approximation is used, one

obtains as an approximation to the log-likelihood ratio the expression

AMx) = 3 (o[(L ET'x) DI E '), - (LE'%),]
j= J j+1 J
n-1 5 -1
- (472) 2 o7 [(LE x).] (2-9)
-0 J
J
n-1 -1 -1 n-1 2 -1
= 3 (of[(LE x).DI(E "x),,,] - (472) 3 o [(LE "x).].
_ J j+1 L J
j=0 j=0
If now a new data point X 1 is observed, the approximation has the

f- recursive form
N AP Lex)y = A%(x) + of(L F 'x) J(F !x) - (472) S2[(L E 'x) 1. (2-10)
X = = == ®pdit Haeg == &l
;i: One notes the following:
i; (1) Implementation and calculation of A require the following
:ﬂ: operations. First, the function o must be known and pro-
grammed. Given the value of An(&n) and the observation
5“ = (xl....,xn). one stores An(£n)' En‘ o[ (L E-lﬁ)n], and
-1 n

(L FE "x )n. When the data point x is received, it is only

n+1l

JeuT L R . L. . - . O . & N
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(2)

(3)

which means

-1 _n+1
X

n+l
necessary to use X to calculate (E )n+1'

. n+1 .
to cross—-correlate the observation x with the n+l1 row of

E—l. This number, say bn+1' is then used to form An+1(£n+1)‘
n n

AP LGPy O AR (xP) 4+ o3 b, b - (A72) o2 [3 b.].
1 1 n+1 1 1

This is much simpler than a procedure whereby the function

= L F_1 is expressed in terms of 1its eigenvalues and

eigenfunctions, since those quantities would have to be

stored for E" and all the sample indices n 2 1, and a com-
plete new calculation done for each new sample point

observed.

. n, n
As already noted, the expression A (x ) <can only be
considered as an approximation to the discrete-time
likelihood ratio. This approximation becomes more valid as n

increases, since it amounts to representing the noise vector

i-1
N by Ni = 3 Fij(Aﬂ)j. where AW is a vector of i.i.d.
j=1
i-1
N(0.4) random variables. As n increases, I F(iA, jA)(Aﬂ)j
j=1
will converge in mean-square to N(iA) = N(t), keeping
iA = t, where the function F 1is that appearing in the
representation Nt = It F(t.s)dWs. Thus, as n increases, the
0
i-1
representation of N by N(t) = 2 Fij(Aﬂ)j converges to the
j=1

representation satisfying the original continuous-time
models for noise and signal-plus-noise.

o can be estimated from a sample of data representative of
signal-plus-noise. In discrete time, the procedure is as

follows, given an observed S+N vector X.

a) Form AZ = E-lﬁ. where RN = F F», F lower-triangular,

(82), = Z(id) - Z([i-1]4). 24 = O.
i-1
b) Z(id) = A 3 o(Z ) + W(id).
j=1 J

Given the sample vector Z obtained from b), the function o can be

estimated. A maximum-likelihood procedure is given in [8].

Oof

course, the approximations (2-8) and (2-9) need not be

likelihood ratios for a fixed finite set of sample points. However, it




will now be shown that (2-9) is a likelihood ratio when the function o
is linear. In this case, S+N is Gaussian, so that the likelihood ratio

d /duN can be found.

u
S+N
In accord with the model for (Z(t)), the discrete-time represen-

tation is (for o linear)
k

Z o = A jfl aZ o+ W (2-11)

. . . n
It will be shown that for an observation vector x in E,

-1 _1 n-1 o n-1
- 5*(32 - gw )x/2 = - (A/2) ifl ajxy + i§1 aixi(xi+1—xi) (2-12)

[ \V]

The LHS of (2-12) is the log-likelihood ratio (within a constant) of

sz/de. Given the equality (2-12), if one has that N = F AW,
N -1
S+N = F AZ. then [dug,y/duyl(x) = [dPy,/dP,,J(E "x).
Thus let
k
Zyop =4 2 aij * W k21,
j=1
7 —_
Z, = Wl.
Let A be the matrix diag[al,....an]. The RHS of (2-9), evaluated at

y = F L— X, then becomes

N < 2
(Ax)j(xj+1—xj) -2 A i (AX)J ° (2‘13)

To show that (2-9) is a likelihood ratio test statistic, it will first

be shown that (2-13) is equal to - 5*(R_é—g;l)x/2 = log [dPZ/de](&)
+ constant. - B

The above representation for Z gives

(L + AA)Z = AL A Z + ¥

so z-8""¥

B =1+ AA - AL A.

/. thus has covariance matrix RZ = E—IRWB*_I. SO0 Ril = B*R&lﬁ. Since
&w(i,j) = Amin(i,j), gw = ALL», and thus

R\ = (1 + AA - AA L)Le 'L7I(1 + AA - AL A)/4

where (L ).. =1 if i=j

"

-1 if i=j+1

O otherwise.

N
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PO S AP ST UL, WV, W W W W PR WP W O W SO PO Ty




-1 -1 13

This gives BZ - RW
Craane T e v AL TILT v LTI < AL T (1eaA) - (eaa)LxTlA 4%
and for a data vector x,
o (By1 - Ry x = AL Ax)xL T Ax ¢ 2(L T k)L Ax
- 2(L7 ) wAx - 28(L7Ax)%Ax + A(Ax)=Ax
n-1 5
The three terms containing A sum to A 2 a;xi. while the other two
i=
n-1
~ —- 5 —
terms sum to -2 i:I aixi(xi+l xi). so that
-1 -1 n_l nolon o
x*(R, -R, )x = -2 3 a.x (x., .,-x.) + A 2 a’x", as desired.
= Z L L J7iTTi+l 7 L J
j=1 j=1
This shows that (2-9), evaluated at y = F L~15. satisfies
An(E L_lﬁ) = - §¥(3£1 - 3&1)5/2 = log [dP7/de](§) + constant. More-
e I, -1
over, [d“§+ﬂ/dulj(l) = [dPA;/dPAW](E y) = [dpl/dPE](L F "y). the last

-1 -1 -1

AW:L w. With y_Zf‘_l; X

PJI

equality because AZ = L

[d“S+B/d“ﬁ](l) = [dPZ/dPl](g) = (from above) exp[An(l) + constant].

Thus, when the above assumptions are satisfied (including the
assumption that Z is a Gaussian vector), the approximation given in

(2-9) is a discrete-time finite-sample likelihood ratio.

3. SPHERICALLY-INVARIANT NOISE (SIN) MODELS

Let (N(t)). t in T, be a real-valued zero-mean stochastic process
on a probability space (Q2.B,P). N is said to be spherically invariant
if it has the representation N{(t) = AG(t) for each t in T. where G is
a Gaussian process and A is a random variable which is independent of
G and which has finite second moment. Since it can be assumed that

EA2 = 1., the covariance of N can be taken to be the same as that of G.

Thus, the finite-dimensional distributions of N are completely
determined by its covariance and by the distribution of the random
variable A. SIN can thus be viewed as a first step away from Gaussian
noise.

If the random variable A is discrete, then the distribution of

the random vector (N(tl) ..... N(tr) is given by the density function

VWP RIS ORIV O PE.OCTON




pin(O.a?R) (3-1)

where n{(a,B) is the density of a Gaussian random vector (in Er) with

mean a and covariance matrix B. In the representation (3-1),
v P[A:ai] = p;. and K ( ® is the number of distinct values that A
:; assumes with positive probability. In this paper, it will be assumed

throughout that A is a discrete random variable. We also assume (WLOG)

-2 that EA2 = 1 and that A is strictly positive.

o The model for univariate impulsive-plus-Gaussian noise developed
' by Middleton [12] takes two basic forms, defined as Class A and Class
B, depending on the relative bandwidth of noise and receiver. The

Class A model is defined to exist when the impulsive noise pulses do

not cause transients in the front end of the receiver; it is thus a

?f model for narrowband noise. The wunivariate density function as
P developed by Middleton has the form [12]

; _ o m 1

" f(x) =e ¥ 3 %, —— exp {—g x2/ai} (3-2)

- m=0 " V27 “m

where U is the "overlap index” and (ai) is a sequence of variance
components. The overlap index is defined to be the average number of
arrivals per second multiplied by the average length of the pulse. The

variance component ai is defined by aﬁ = (mU_1 + I'y/(1 + r), where T

is the ratio of the intensities of the Gaussian and non-Gaussian

components of the noise.

It can be seen that (3-2) is the probability distribution of a
spherically-invariant random variable X = AY, where Y is a zero-mean
_ unit-variance Gaussian r.v., and A is an independent r.v. taking the
l; values (am) with

. m -U
- P, = P[A-am] =U" e “"/m! (3-3)

m ~U
e

c

2 [e 0]
In fact, E A® = 3

m

m

m! (a + IYys7(1+7) = 1.

0

- In [16], Spaulding and Middleton analyse the problem of detecting
‘; a known signal in Class A noise by assuming independent sampling. so

that the sampled noise data has joint density function (n samples)

n
. p(x) = I

il 1 Xy
2 p. T exp|- 5 |- (3-4)
1 m=

o ™ VE; a
m
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However, if the r.v. A is constant over the sampling interval, then

the density of X = AY, where the components of Y are i.i.d. N(0.,1)., is

? ! Pk
p(x) = 2 pm 2 . n/2 exP[— ——_2 ] (3-5)
m=0 2r a J 2a
m m
¢ n )
where IlIxlI™ = 2 Xy - When the Gaussian process Y has non-singular
i=1

covariance matrix R, then the class A noise has joint density (if the
r.v. A is cons-ant over the observation interval)

«© 1
2
p(x) = = pm [ 2]11/2 L exp |-z x*R )_(./am (3_6)
=0 2

m

As will be shown in the next section, for reasonably large n it
is not necessary to know the values of U and I' in order to implement
this detector. This fact, as well as the joint density (3-6),
illustrates some of the advantages of using a general SIN model
whenever appropriate.

Of course, SIN models are not limited to the Middleton model.
They cover a large family of smooth unimodal densities that are
symmetric about their mean. NonGaussian examples of spherically-

invariant distributions include the t and double-exponential [9].

4. DETECTION IN SPHERICALLY-INVARIANT NOISE (SIN)

In this section, (N(t)) will be SIN with representation (AG(t)).
(G(t)) is a m.s. continuous 2zero-mean Gaussian process and A is a

strictly-positive discrete random variable independent of (G{(t)) and

with EA2 = 1. (N(t})) thus has zero mean and covariance the same as the
covariance of (G(t)). A takes on the value a, with probability pi>0.
Likelihood ratio detection of a known signal in SIN  has
previously been considered by Yao [18] for a very special case: the
threshold on the likelihood ratio test statistic is unity. [t has also
been considered by Spooner [17] for a specific distribution of the
mixing random variable A. A more comprehensive treatment has been
given by Picinbono and Vezzosi [13]. Their work. and that of Spooner
and Yao, has been for the discrete-time finite-sample-size problem.
However. these authors all use or permit continuous mixing r.v.'s A.
Our choice of a discrete r.v. for A permits analysis of the continuous
time problem without introducing much mathematical complication. It is

also sufficient to apply our results to detection in Middleton's Class
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A noise.
The first topic to be addressed here 1is that of absolute
continuity and likelihood ratio. Sufficient conditions are contained

in the following result.

Prop. 4.1. Suppose that (Y(t)) is a stochastic process adapted to
o(G) v o(V). where (V(t)) 1is any process independent of (N(t)).
Suppose also that Y(t) = S(t) + N(t) a.e. dtdP, where (S(t)) is a
stochastic process adapted to og(Y) and with almost all paths in HN.
Then My <K My - Moreover, M iaG ¢ Hac for all a>0, and

[d“S+N/d“N](x) = Ei Ic(ai)(x) [duS+aiG/d“aiG](x) (4-1)

a.e. duN(x). In (4-1)., the sum is over all a, such that P[A:ai] > 0,
IC is the indicator function for the set C in L2[O,T], and

; 0
C(ai) = {x: lim o ?

x.e X2/n . = a?).
n j J J

1
Moreover, if (S(t)) is any process such that P[A:ai] > 0 implies

uS+aiC <K “aiG' then HgoN << My and duS+N/duN has the representation
(4-1}).

Proof. If (Yt) is adapted to ¢(G) v g(V). then (Yt) is adapted to

og(aG) v g(V) for any constant a. Since HN = HC = HaG' HgiaG << Mo for

any positive constant a, by Theorem 3 of [5]. Then for any Borel set B
of L2[O,l].

ug,n(B) = 2, piuS+aiG(B) = 3, pijB [d“S+aiG/d“aiG] (x) duaiG(x)'

n

Now, lim L ) <x.e.>2/k. = a? w.p.1 when A = a,. under both My and
o j=1 J J

Hgon: To see this for My (noise-only data), one notes that the random

1 .
variable <x.ej>/A§ has the form ai<G.ej>/A§ when only noise is present

1
and A = a, . The random variables {(G.ej>/kji j21} are i.i.d. N(0,1)

n
Thus, by the law of large numbers, i b3 (G.ej>2/kj < 1 with probability
1
1 0 2 2
one. When A=a., — 23 <{N,e >"/A. - a7 w.p.l (u,). If signal is present
i n j=1 J J i N
19 2 2
and A=za., then lim — 2 <S+a G, A.>%/AN. is again equal to a’ w.p.l. To
i oo 1 i j J i
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[+ ]
see this, note that since S is in HN w.p. 1, ? <S.ej>2/xj is finite.
1 S 2 15
This implies that both = I <S,e >7/A. and = 2 <S,e_.><a_G,e >/A.
noy J J noy J 1 J J

converge to zZero w.p. 1.

The preceding shows that My G[C(ai)] = 1 and that My G[C(ai)] =0
i J

for i#j. Thus,

|
M

p I [d”s+aic/d“aic](x) d“aic(x)

B) .
uS+N( lBﬂC(ai)

o

"3 Bﬂg(ai)[duS+aiG/d“aiG](x) duN(x)

bt

because uN(BﬂC(ai)) = PiM, G(BﬂC(ai)). (4-1) now follows by the
B §

monotone convergence theorem.

The expression for the likelihood ratio given in (4-1) partitions
the Borel o-field of L2[O.T] into two major subsets. These sets are

n
U C(ai) and 1its complement, where C(ai) = {x: lim 1 b} <x,e.)2/x

i n n j:l J

a?}. It is noteworthy that the likelihood ratio does not involve the
probabilities P{A:ai}. These facts show first that the important
factor in determining the likelihood ratio for detection in
continuous—-time SIN is knowledge of the values which can be assumed by

the mixing random variable A. However, no penalty is assessed if one

includes too many possible values of A. That is, if b 1is not a

1 9 2 2

possible value of A, then the set C(b) = {x: lim n 3 (x.ej> /Aj =b"}
n j=1

has zero uN—probability, and so addition of the term

Ic(b)(x)[duS+bG/dubG](x) to (4-1) will not affect (with probability
one) performance of the test statistic.

A particular application of the above is the situation when the
noise can be either Gaussian or spherically-invariant nonGaussian. If
P[A=1] > O holds for the mixing r.v. in the nonGaussian case, then the
likelihood ratio (4-1) will still be a likelihood ratio if the noise

is in fact Gaussian. If P[A=1] = O for the nonGaussian SIN model, then

dug,g

one can add the term Ic(l)(x) (x) to the likelihood ratio (4-1).

duG
The resulting sum will be a likelihood ratio when either hypothesis is

true.
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_r".(_r .
" d

R
»

In the remainder of this section, attention will be restricted to

the problem of detecting a known signal S in additive SIN. In the case

T

of GCaussian noise, it is well known that the likelihood ratio exists

i"‘,‘.,_,
-f-innu;;uy;

h.
(non-singular detection) if and only if S is in range(Rﬁ). The same

[l

result holds if the noise is any SIN process.

ey
o

Prop. 4.2. If S is a fixed element in 22[O.T]. then either HgoN 1 My
or else Hoon << MN and My << L Mutual absolute continuity holds if

Ty
L SRR
N P RS

5
and only if S is in range(Rﬁ).

P

. . "V

Proof. If the L2[0.T] equivalence class generated by S is not in

Y L
3 t"‘r". .

i
2 .
range(RN). then “S+aiG 1 uaiC for each a,. using the known results for

the Gaussian case. As shown in the proof of Prop. 4.1 (and well-known

Lo ol

[14]). uaiC 1 “ajG for i#j. Moreover, uS+aiC 1 “ajG for j#i. since

T

2
J
space in order to have mutual absolute continuity of Hsea G and Ha G

1 4.
range(Rﬁ) = range (a?RN+a RN)Z] and S must belong to this latter range

K
[11). Thus uS+aiG 1 My ¢ for all i and j, so that uS+aiG 1 j§1 pj“ajC
K K
for i=1,..., K. This gives .2 PiHgia G 1 .E pjua.G' OT Mg, N 1 My -
i=1 i j=1 3
) . Co T
Conversely, if S is in range(RN), uS+aiG ~ uaiG for i=1,....K, so
that
K K
.E PiHgra ¢ ~ .E pj“a.G'
i=1 i j=1 J |

Performance of the likelihood ratio (4-1)}) can be computed for the
case of a known signal. When the noise is Gaussian, then it |is

well-known that the performance depends only on

d% = 1si2 = 3 <S.e >2/A
N n n
n2l
where {An. n2l} and {en. n21} are the eigenvalues and associated

c.o.n. eigenvectors of the noise covariance operator RV'
)

el [Ny PRI WY W W Y V. v |
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Prop. 4-3. Suppose that the signal is a known function S belonging to

A
range(Rﬁ). and that P[A:ai] = Py > 0, i21. Then performance of a
likelihood ratio test statistic is given by

P =2 p.
i

A . PIZ 2 ka, + d/(2a,)] (4-2)

PD = f Py P[Z > ka, - d/(2ai)] (4-3)
where Z is distributed N(0,1) and k is a constant whose value is

determined by the desired value of PFA'

Proof: For k > O,

kd

PFA = uN{x: (duS+N/duN)(x) > e } = uN{x: ? Ic(ai)(x)ei(x) > kd}

where

1 7 2
Pi(x) = 1og[(duS+a'C/dpa‘C)(x)] = _2l2 <x,en><S.en>/)\n - d7/2
i i

a. n
1

Thus
Pra = 2P

. 2 2
= ? piuG{x- aiEn <x,en><S.en>/)\n 2 kdai + d7/2}.

(M glxe €00 2 k)

Since the random variable & defined by
&(x) = I <x,e_><S.,e_ >/A
n n n n

is Gaussian with respect to Ho and has mean zero and variance d

PFA = Ei P P[Z > kai + d/(2ai)].
PD is calculated in the same way.
a
As can be seen from (4-2) and (4-3). detection performance

depends on d and also on the distribution of the mixing random
variable A.

The likelihood ratio as given in (4-1) requires prior knowledge
of the values (ai) that can be assumed by the mixing random variable
A. However, this prior knowledge 1is not necessary 1in order to

implement this detector.

Prop. 4-4. For a known signal S, a likelihood ratio test is to decide

signal present if and only if

[e(x)/7A%(x) - d2/(2A%(x)] 3 k (4-4)
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where k is determined from (4-2) and (4-3)., and
n
lim L z <x.ek>2/Ak.
n R P

A% (x)

Proof. If x € C(ai). then 22(x) = a? with probability one under my or
HgeN' @S shown in the proof of Prop. 4-1. The result then follows
directly from the expression (4~1), or by examining the proof of Prop.
4-3.

8]

A likelihood ratio detector can thus be implemented without any
prior knowledge of the distribution of the mixing random variable A,
provided the noise is in fact SIN. However, as can be seen from the
expressions (4-2) and (4-3) for PFA and PD' likelihood ratio detection
performance depends on the complete distribution of A. This means that

it is not possible to set a threshold for a specified PF unless one

has complete knowledge of the distribution of A. A

This leads one to consider the problem of CFAP (constant false
alarm probability) detection, which has been treated for many years by
designers of active sonar detection systems. In this traditional
context, the detection problem is that of detecting a signal in
Gaussian noise which is known except for a scale factor. It is desired
to have the same probability of false alarm for any value of the scale
factor. The scale factor has usually been treated as an unknown
parameter, rather than as a random variable.

A CFAP detector can be obtained for the SIN detection problem by
using the following decision procedure:

decide signal present if and only if

2(x)/A(x) > kd. (4-5)

~ ~ 1 A~
when A(x) = [A2(x)]2. When noise only is present, @(x)/A(x) = l’(x)/ai

with probability one when x = aiG. Since then &(x) = aié(G). one has

<

that 2(x)/A(x) is Gaussian with zero mean and variance d2 and

PFA = P[Z > k]. (4-6).
When this detection algorithm is used, and x = S + aiC. then [’(x)/ai
is Gaussian with mean d2/ai and variance d2. so that
PD = 3 P P[Z > k - d/ai]. (4-7)
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The difference in performance between the optimum detector (4-4)
and the CFAP detector (4-5) will depend on the distribution of A.
Figure 1 shows an example using a distribution for A obtained from
analyzing under-ice sonar data. The curves show performance for the
optimum detector (4-4), the CFAP detector (4-5). and the matched
filter (A=1 w.p. 1) when the noise is SIN with the given distribution
for A. Also shown is the performance that one would obtain using the

matched filter if the noise were truly Gaussian. The difference in

- performance of the matched filter and the likelihood ratio illustrates
E; the significant performance loss that can occur if the noise is mis-
Fi takenly assumed to be Gaussian. This and the similarity in perfor-
ﬁi mance of the CFAP detector and the likelihood ratio illustrate the
- wisdom of using a CFAP detector if there is a possibility that the
if: noise is SIN with unknown distribution.
y .
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For the discrete-time finite-sample detection problem, with ob-

servation x in E™, the likelihood ratio dPg+N/dP§ is easily seen to be
n n K n K N
[dPS+E/dPH](§) = i%1pidP§+aig(i)/jfldePajg(ﬁ) (4-8)

where dP" is the multivariate density function for the probability p"

.n . .
on E . In contrast to the continuous-time case (4-1). the

probabilities P, = P[A:ai] appear in (4-8). Moreover, the likelihood
ratio (4-1) produces a non-zero value (with probability one) only if
the observation 1involves aiG for a; one of the terms included in
(1-1): otherwise, the value of the likelihood ratio is zero. This 1is
not true in the discrete-time case of (4-8). In the case of a known

signal S8, the performance (P and PD) of (4-1) depends only on the

FA

distribution of A and on d2 = HR&éSH2. The discrete-time detector’'s
performance improves as the sample size n increases, with d fixed.
These differences can all be understood by examining the form of
(4-8) as the sample size increases.
Suppose that noise only is present, and that the mixing r.v. A
“akes on the value a;. so that the received waveform x is aig with G

multivariate Gaussian, zero mean, non-singular covariance matrix R.

el n N 2. -2, ., 2
Let \J = log pj dPan(i) = log pj - n log aj - aiHR Gl /(Zaj) + C
n .
= log p, - n log a,., - a? b VZ/(2a2) + C
J J o1 K J

where C is 2 constant and (Vk) is 1.i.d. N(O,1). It will be shown that

Yj - Yi -+ - w.p. 1. Thus,
n n n 2 2, 2
Y. - Y, = log {p./p.] - n log [a /a.] + 3 V_|&(1 - a7/a%)
J i Joi b k=1 K LN
2
= npui'.j + Dxnui.j
where xi is chi-square with n degrees of freedom, B = B(i.])
= |(1~nf/a?)/2|, p = p(i.j) = |log (ai/aj)!. vy = v(i.j) = log pj/pi.
and v, . =1 if a, ¢ a.,, u, ., = -1 1if a, 5 a., . ‘
1. 1 J 1.] 1 J
For a < aj. m > 0, x = aig. one has P[Y? - Y? > ~m]

[N
el

— )

P dPR (x)] = P[x> 2 ~(m+v)/D + np/R].
3 1=

a

9
Since x;/n = 1l w.p. 1l as n = o, and p/p > 1 for a, <oa g,
Y
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P[limn (xﬁ/n +(m+v)/Bn - p/B) 2 0] = 0, for any fixed m > O.

n

If a; >a,. then P[Y]-Y]2-nm]-= P[x> < (m#7)/B + np/B]. In

i

this case. p/B < 1, so P[limn(xi/n ~(m+7)/Bn - p/B) € 0] = O.
Using these expressions, one can obtain the value of n required
for a specified approximation, once the distribution of A is known.

The value of n required for P[p.dP (x) 2 e "p.dP (x)] ¢ a when
J ajG i aiG

X = aig is determined from
P[xi 2 -(m+v)/B + np/B] { « if a, < a
(4-9)
P[xﬁ { (m+~)/B + np/B] < «a if a, > aj.

This procedure can be repeated for the numerator of (4-8). A

conservative result, which satisfies

> e "'p.dP { a, is to require n 2 An + n

p[deP§+ajg(§) < i9Ps4a g(x)1 <

l .
where n, is the value for a given by (4-9) and An satisfies

Anp(i.5)/B(i.5) > dZ /a  + d2u(i.j)/(2a12). (4-10)

Applying these results to the distribution used to obtain Figure

1. with e ™ = .01 (m = 4.6) and a = 10—3, the required sample size for

the denominator of (4-8) is n 2 21, using (4-9). The value of An
given by (4-10) is 9, so that an adequate sample size is 30. This
rather small required sample size is a result of the wide separation

between the three values of A, and (to a much lesser extent) the

D B
T o » L
L It

ﬁ corresponding large differences in their probabilities. It can be
N seen from (4-9) and (4-10) that distributions for A which have more
gﬁ similar values will require larger sample sizes in order to achieve
£¥ the above bounds, with a requirement of n - ® as the minimum distance
o between A values converges to zero.

The gist of this analysis is that the likelihood ratio (4-8)

converges to dP§+aiQ/dPaiQ when x = aig. as the sample size increases;

the rate of convergence depends on the distance from a, to the nearest

value of A not equal to a and the probability ratios can be ignored

i
for large sample size. When the sample size n is sufficiently large to
assume equality in this approximation, then the performance of the

discrete-time detector is the same as that of the continuous-time

detector so long as the value of d2 is fixed.

For n sufficiently large, then, one can mimic the log-likelihood
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i ratio for the continuous-time case:

e n n ~ N ~2 42,002 _

o [dP§+E/dPu](5) =z ¢ (x)/An(g) d /2An(§) (4-11)
A . n 0

AR where Az(x) = n_l I (xxe, )T/N,..

n k k

1 k=1

o n n

e (x) = I (xxe;)(Sxe, )/A, .

- k k k

- k=1

~

~ = =

. R ey Akgk' k=1, ,n, and

f} {gk, k21} is a complete orthonormal set in E".

;ﬁ The detector (4-11) has previously been given as an approximate
~ likelihood ratio for large n by Picinbono and Vezzosi [13]. The above
;t analysis indicates why this is so, and indicates how one can determine
o how large n must be in order to use the approximation.
= The CFAP detector now becomes

- .

‘: ACFAP('&) = ¢ (&)/An(&) (4—12)
e A 22 %

~ where A (x) = [An(§)]2.
- For small n, one may wish to consider the CFAP detector given by
2 " n

-__. ACFAP(X) = ¢ (&)/Un(x) (4_13)
o 5 oy noplxxe;) | on (xxe.)q2

- where 0~(x) = (n-1) p) [ e — ] . Since the random
i=1*% A2 j=1 a2

. i J
. o sos 2 n

. variables {g*gi/Vki- i=l,...,n} are i.i.d. N(0,a”) when A=a, and ¢ (x)
ﬂi is Gaussian, one may wish to assume that §?gi/Vki = constant = d/vn
iﬁﬂ for i=1,....n. The test statistic divided by d then has a t
_!5 distribution with n-1 degrees of freedom when noise only is present;
jqﬂ this fact can be used to calculate pFA' Under this same assumption,
ﬁzj one can also obtain an expression for PD for this detector if the
';: distribution of A is known, using the fact that (n - 1)an2 is
o chi-square distributed with n - 1 degrees of freedom. One could use
:ﬁ; these considerations to determine a worst-case value of PD if the
:3: distribution of A is known to belong to a specified family., while
‘ii maintaining a desired PFA’

- The problem of detecting a signal in Gaussian noise having
e

ﬁ? unknown scale factor is familiar in active sonar. A detailed treatment
ff of CFAP detection for this problem has been given by Grieve [7]. who
s obtained CFAP optimality properties for (4-12).
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5. APPLICATIONS TO DETECTION IN IMPULSIVE NOISE ENVIRONMENTS

As previously noted, Middleton's Class A univariate model 1is a
special case of SIN. Detection in such noise has been analysed by
several approaches. In ([16]. Spaulding and Middleton assume
independent sampling and then develop bounds on likelihood ratio
performance for communicating with a known signal over a channel in
the presence of Class A noise. The Middleton model has also often been
approximated by using only the first two or three terms: "Gauss-Gauss"
or "Gauss-Gauss-Gauss"” noise.

If the mixing random variable of the Middleton model remains
constant over the observation interval. then the results given above
can be used to provide detection results. It is not necessary to have
independent sampling, but only to know the covariance matrix of the
noise and the parameters U and I'. For detection of a known signal, the
preceding results can be used in several ways. They provide upper
bounds on detection performance by giving the continuous-time
detection performance. Secondly, they provide a method for obtaining
exact detection performance for the discrete-time finite-sample-size
detectors, and provide a means of calculating required sample size in
order to simplify the detector structure. Thirdly, they can be used to
obtain discrete-time CFAP detectors, as well as upper bounds on the
performance of such detectors. Finally, the fact that the likelihood
ratio detector can be implemented without knowing the distribution of
the mixing r.v. A, once the sample size n is reasonably large (4-11),
can provide a significant reduction of the complexity of the
implementation. One need only adjust the threshold as a function of

the parameters U and I', while the operation on the data is unchanged.

Even this adjustment is not necessary if one is willing to use a CFAP
detector. !
The imbedding of the Middleton Class A model within the general
SIN model thus provides a number of useful results. One may note the
importance of the continuous-time model, which is often disregarded on
the grounds that it is not relevant to practical signal detection. In
the present case, the continuous-time model provides useful upper
bounds on detection performance for both the likelihood ratio detector
and the CFAP detectors. It also provides one with a practically-useful
implementation and simplification of the apparently extremely-compli-
cated discrete-time likelihood ratio detectors, and a rationale for
making this simplification. The notion of orthogonal measures is

central to these results.
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6. EXTENSIONS TO THE SIN MODEL

The SIN model is not realistic for many situations, such as
observation periods where the mixing r.v. A cannot be expected to take
on a constant value. A more reasonable model in such situations would
be generalized spherically-invariant noise, of the form
N(t) = A(t)G(t), where now (A(t)) is a stochastic process independent
of the Gaussian process (G(t)). This reduces to a SIN model in the
univariate case. Some work has previously been done for such a model

[15]. but general results are so far not available.
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